

1ST YEAR ENTRANCE COMPETITION EXAM-JULY 2022 SESSION

MATHEMATICS TEST

TIME ALLOWED 3h00

EXERCISE 1 (4 points)

Rank $x_i = 1$ is given for year 1998. Consumption is expressed in thousands of euros.

Year	1998	2000	2001	2002	2004
Rank of the year x_i	1	3	4	5	7
Consumption in thousands of euros y_i	28,5	35	52	70,5	100,5

- 1. Represent the points $P_i(x_i; y_i)$ in an orthogonal frame reference (we will take 1 cm as one unit in the abscissa and 1cm for 10 000 \in in ordinate). **0,5pt**
- 2. Determine the coordinate of the mean point G; place it in the previous mark. **0,5pt**
- 3. Calculate the linear correlation coefficient and conclude.

0,5pt

- 4. A new adjustment in exponential form seems even better.
- a. Copy and complete the following table knowing that $z = \ln y$. The results will be rounded to the nearest hundredth.

Χİ	1	3	4	5	7	8
$z_i = \ln y_i$	3,35					4,94

b. Determine the reduced equation of the regression line from z to x obtained by the method of least squares using the calculator; this equation is of the form z = cx + d; rounding the values of c and d to the nearest 10^{-2} .

Deduce that: $y = 20,49 e^{0,23x}$.

0,25pt

c. Then estimate, using this new adjustment, household consumption in this city in 2007 to the nearest $100 \in$ 0,25pt

EXERCISE 2 (5 points)

Questions 1 and 2 are independent.

- 1) We throw two ordinary dice, we denote by X the random variable which takes as its value the absolute value of the difference of the two numbers drawn.
- a) What are the different possible values of X?

0,5pt

b) Define the probability distribution of X.

0,75pt

- c) Calculate the expectation E(X), the variance V(X) and the standard deviation σ . **0,5pt×3=1,5pt**
- 2) Massangam is made up of 60% women and 40% men. 45% of women are traders as well as 20% of men. A resident of Massangam is chosen at random for a reception at the unity palace.
- a) What is the probability p of choosing a trader? (male and female)

0,75pt

b) What is the probability of having a man knowing that he is a trader.

0,75pt

c) What is the probability of having a wife knowing that she is not a trader

0,75pt

EXERCISE 3 (4 points)

Parts I and II are independent.

I. We consider in \mathbb{C}^3 , the following system of unknowns x, y,

z (S):
$$\begin{cases} x + y + z = 2i - 1 \\ xy + yz + xz = -2(1+i) \\ xyz = 2 \end{cases}$$

- 1-Show that $(a, b, c) \in \mathbb{C}^3$ is a solution of system (*S*)if and only if a, b and c are roots of the polynomial P of third degree whose leading coefficient is 1 that we will determine. **0,5pt**
- 2- Show that the equation P(z) = 0 admits a real solution and only one that we will determine. **0,5pt**
- 3- Solve in \mathbb{C} the equation P(z) = 0 and deduce the solutions of the system (*S*) in \mathbb{C}^3 . **1,5pt**
 - II. Considering the equation: $z^5 1 = 0$, calculate $\cos \frac{2\pi}{5}$ and $\cos \frac{4\pi}{5}$

EXERCISE 4 (7 points)

I- Consider the function f defined by : $\begin{cases} f(0) = 0 \\ f(x) = \frac{x \ln x}{x+1} \text{ , si } x > 0 \end{cases}$

1.	Study the differentiability of f at 0 .	0,5pt
2.	Let the function g be defined on $]0, +\infty[by: g(x) = lnx + x + 1]$	
a)	Study the variations of g .	0,75pt
b)	Prove that the equation $g(x) = 0$ admits a unique solution β such that:	
	$0.27 < \beta < 0.28$	0,75pt
c)	Give the sign of $g(x)$ in terms of x .	0,25pt
,	Express $f'(x)$ in terms of $g(x)$.	0,5pt
		0,5рс
b)f(β) = $-\beta$	0,25pt
c) _{Plo}	of the curve f in an orthonormal frame of reference $(0, I, J)$ of the plane.	0,5pt
II	We define the function h defined on]0, $+\infty$ [by h(x)= $e^{\frac{x+1}{x}}$	
1.	Prove that the equation $f(x) = 1$ has a unique solution α in [3,4]	0,25pt
2.	Show that $f(x) = 1_{if \text{ and only } if} h(x) = x$	0,25pt
3.	Show that for any X element of [3,4], $h(x)_{is}$ also an element of [3,4].	0,5pt
4.	Prove that $ h'(x) \leq \frac{1}{2}$ for any element of [3,4]	0,5pt
	$U_0 = 3$, 1
5.	Let U the sequence be defined by $ \begin{cases} U_0 = 3 \\ U_{n+1} = h(U_n), & n \in \mathbb{N} \end{cases} $	
a)	Prove that for all natural numbers n, $U_n \in [3, 4]$	0,5pt
1.	Prove that for all natural numbers n , $ U_{n+1} - \alpha \le \frac{1}{2} U_n - \alpha $.	- 0 = .
b)	Prove that for all natural numbers 2 n 1 2 n .	0,5pt
c)	Deduce that for all natural numbers n , $ U_n - \alpha \le \left(\frac{1}{2}\right)^n$.	0,5pt
d)	Prove that the sequence U is convergent and find its limits.	0,5pt
e)	Determine the integers n for which U_n is approaching the value of α to the near	-
		0,5pt