1ST YEAR ENTRANCE COMPETITION EXAM- JULY 2022 SESSION

MATHEMATICS TEST

TIME ALLOWED 3h00

EXERCISE 1 (4 points)

Rank $x_{i}=1$ is given for year 1998. Consumption is expressed in thousands of euros.

Year	1998	2000	2001	2002	2004
Rank of the year x_{i}	1	3	4	5	7
Consumption in thousands of euros y_{i}	28,5	35	52	70,5	100,5

1. Represent the points $P_{i}\left(x_{i} ; y_{i}\right)$ in an orthogonal frame reference (we will take 1 cm as one unit in the abscissa and 1 cm for $10000 €$ in ordinate).
2. Determine the coordinate of the mean point G; place it in the previous mark. $\mathbf{0 , 5 p t}$
3. Calculate the linear correlation coefficient and conclude.
4. A new adjustment in exponential form seems even better.
a. Copy and complete the following table knowing that $z=\ln y$. The results will be rounded to the nearest hundredth.

$x i$	1	3	4	5	7	8
$z_{i}=\ln y_{i}$	3,35	\ldots	...	4,94

b. Determine the reduced equation of the regression line from z to x obtained by the method of least squares using the calculator; this equation is of the form $z=c x+d$; rounding the values of c and d to the nearest 10^{-2}.

Deduce that: $y=20,49 \mathrm{e}^{0,23 x}$.
c. Then estimate, using this new adjustment, household consumption in this city in 2007 to the nearest 100 €

EXERCISE 2 (5 points)

Questions 1 and 2 are independent.

1) We throw two ordinary dice, we denote by X the random variable which takes as its value the absolute value of the difference of the two numbers drawn.
a) What are the different possible values of X ? $0,5 \mathrm{pt}$
b) Define the probability distribution of X. $0,75 \mathrm{pt}$
c) Calculate the expectation $\mathrm{E}(\mathrm{X})$, the variance $\mathrm{V}(\mathrm{X})$ and the standard deviation σ. $0,5 \mathrm{pt} \times 3=1,5 \mathrm{pt}$
2) Massangam is made up of 60% women and 40% men. 45% of women are traders as well as 20% of men. A resident of Massangam is chosen at random for a reception at the unity palace.
a) What is the probability p of choosing a trader? (male and female)
b) What is the probability of having a man knowing that he is a trader.
c) What is the probability of having a wife knowing that she is not a trader

EXERCISE 3 (4 points)

Parts I and II are independent.

I. We consider in \mathbb{C}^{3}, the following system of unknowns x, y,

$$
\mathrm{z}(S):\left\{\begin{aligned}
x+y+z & =2 i-1 \\
x y+y z+x z & =-2(1+i) \\
x y z & =2
\end{aligned}\right.
$$

1-Show that $(a, b, c) \in \mathbb{C}^{3}$ is a solution of system (S)if and only if a, b and c are roots of the polynomial P of third degree whose leading coefficient is 1 that we will determine. $\quad \mathbf{0 , 5 p t}$

2- Show that the equation $P(z)=0$ admits a real solution and only one that we will determine.
0,5pt

3- Solve in \mathbb{C} the equation $P(z)=0$ and deduce the solutions of the system (S) in \mathbb{C}^{3}.
II. Considering the equation: $z^{5}-1=0$, calculate $\cos \frac{2 \pi}{5}$ and $\cos \frac{4 \pi}{5}$

EXERCISE 4 (7 points)

I- Consider the function f defined by: $\left\{\begin{array}{c}f(0)=0 \\ f(x)=\frac{x \ln x}{x+1}, \text { si } x>0 .\end{array}\right.$

1. Study the differentiability of f at 0 .
2. Let the function g be defined on $] 0,+\infty[$ by $: g(x)=\ln x+x+1$.
a) Study the variations of g. 0,75pt
b) Prove that the equation $g(x)=0$ admits a unique solution $\beta_{\text {such that: }}$

$$
0,27<\beta<0,28
$$

0,75pt
c) Give the sign of $g(x)$ in terms of x. $0,25 p t$
3) a) Express $f^{\prime}(x)$ in terms of $g(x)$. $0,5 \mathrm{pt}$
b) $f(\beta)=-\beta \quad 0,25 \mathrm{pt}$
c) Plot the curve f in an orthonormal frame of reference $(\mathrm{O}, \mathrm{I}, \mathrm{J})$ of the plane.

II- We define the function h defined on $] 0,+\infty\left[\right.$ by $h(x)=e^{\frac{x+1}{x}}$

1. Prove that the equation $f(x)=1$ has a unique solution α in $[3,4]$.
2. Show that $f(x)=1$ if and only if $h(x)=x$. 0,25pt
3. Show that for any x element of $[3,4], h(x)$ is also an element of $[3,4]$ 0,5pt
4. Prove that $\left|h^{\prime}(x)\right| \leq \frac{1}{2}$ for any element of $[3,4]$.
5. Let U the sequence be defined by $\left\{\begin{array}{c}U_{0}=3 \\ U_{n+1}=h\left(U_{n}\right), n \in \mathbb{N}\end{array}\right.$
a) Prove that for all natural numbers $n, U_{n} \in[3,4]$
b) Prove that for all natural numbers $n,\left|U_{n+1}-\alpha\right| \leq \frac{1}{2}\left|U_{n}-\alpha\right|$. 0,5pt
c) Deduce that for all natural numbers $n,\left|U_{n}-\alpha\right| \leq\left(\frac{1}{2}\right)^{n}$.
d) Prove that the sequence U is convergent and find its limits.
e) Determine the integers n for which U_{n} is approaching the value of α to the nearest 10^{-2}
